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Abstract

This paper presents a control method using neu-
rocontroller (NC) and genetic algorithm (GA) for a
class of nonholonomic systems, known as difficult con-
trol problems. First, we introduce the design of NC
with GA and then we apply the NC to control two typ-
ical examples of nonholonomic systems: flying robot
and four-wheel vehicle. Simulations show that the NC
controls the systems effectively without the need of the
chained form conversion, which is used in time-state
control method, and the use of NN and GA provides
a straightforward solution for the problem.
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1 Introduction

Nonholonomic systems have been the subject of an
increasing number of researches, especially in control
engineering. Among several control methods available
for nonholonomic systems, time-state control method
using chained form conversion is well known [1]. How-
ever, it may have limitations in the controllable ranges
[1]. Also, symmetric affine nonholonomic system is un-
controllable with continuous differentiable state feed-
back control [2]. This paper focuses on control of such
systems. Since the use of neurocontroller (NC) with
genetic algorithms (GAs) has been applied effectively
to the systems that are difficult to be controlled by
conventional means, and particularly to nonholonomic
systems [3] – [4]. In this study we apply the NC to con-
trol two typical nonholonomic systems: a four-wheel
vehicle and a hopping robot in flight phase. Using the
method, a straightforward solution is provided with-
out using chained form conversion.

This paper is structured as follows: In Section 2 we
introduce the design of NC with GA. In Section 3 and
4 the NC is applied to control a flying robot and a
four-wheel vehicle, respectively. Finally we conclude
this study in Section 5.

2 Neurocontroller with Genetic Algo-
rithm

2.1 Control System

Let X = [x1, x2, · · ·]T be the state of the system, the
task of the NC is to control the system from a certain
configuration that has initial state variable X init to
the desired configuration that has state variable Xref .

Fig. 1 shows the proposed control system, a state
feedback controller. From the input u, the state X
of the system is determined, this state will be feed-
back and the deviation

(
Xref − X

)
will be the input

of the NC for producing output u. The error between
the desired and actual responses is used to update the
connecting weights of NC by GA.

Fig. 2 illustrates the structure of NC which uses
a three-layer I–J–K architecture NN consisting of
input layer, hidden layer, and output layer.
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Figure 1: Control system
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Figure 2: Neurocontroller
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2.2 Genetic Algorithm in Controller De-
sign

This paper relates to the combination of GAs and
NNs in design of a controller, where GA is employed to
train NNs. In the training process, GA searches for the
optimal sets of connecting weights of NNs, which are
transformed into the genetic codes encoded by 16−bit
binary codes.

The algorithm flow of GA is as follows:
Step 1: Initializing a population of NCs with sets

of connecting weights drawn randomly from a uniform
distribution from the range of [−0.3, 0.3].

Step 2: Control simulations are performed using
the NCs. The control performance of each NC is then
evaluated.

Step 3: Offspring NCs are produced by the parent
NCs which are selected based on the evaluated perfor-
mances.

Step 4: Control simulations are implemented for
the offspring NCs, and their performances are then
evaluated.

Step 5: Ranking the NC individuals in the pool of
both parent NCs and offspring NCs. The poor-fitness
individuals are eliminated from the population.

Step 6: Stop if the termination condition is satis-
fied. Otherwise go back to Step 3.

In NC training, GA uses of Roulette wheel tech-
nique in selection of parents for evolution based on
the fitness of NC as:

F (i) =
1

E(i)
, i = 1, 2, · · ·N (1)

where E is error value of ith NC individual, and N is
population size. The error function is defined as:

E =
I∑

i=1

Qi

(
xref

i − xi

)2

(2)

where Qi is weight coefficient, xi is coordinate of the
state variable X , and xref

i is coordinate of the desired
state Xref .

3 Flying Robot Control by NC

In this section, we consider a hopping robot in flight
phase. The mechanism, which consists of a body and
an actuated leg which can both extend and rotate,
and its mechanical parameters are illustrated in Fig.
3. The configuration of the robot is given by the length
(extension) l and the angle ψ of the leg and the angle
of the body θ, thus we define the state variable of
the system as X = [x1, x2, x3]

T = [l, ψ, θ]T . Since
we control the leg extension and angle directly, we

choose their velocities as inputs of the system [1], i.e.

u = [u1, u2]
T =

[
l̇, ψ̇

]T

. The dynamics of the system
is as following:⎡⎣ ẋ1

ẋ2

ẋ3

⎤⎦ =

⎡⎣ 1 0
0 1

− b
a − c

a

⎤⎦[
u1

u2

]
(3)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = J + c1+2c2 cos x2+c3
m0

b = m1M r sin x2
m0

c = c1+c2 cos x2
m0

c1 = m1 (m2 + M) x2
1 + 2m1 (m2 + 2M)x1d

+ (m1m2 + 4m1M + m2M) d2

c2 = rM {m1 (x1 + 2d) + m2d}
c3 = M (m1 + m2) r2

m0 = m1 + m2 + M

(4)

θ
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Figure 3: Flying robot

The control problem of this robot we are consid-
ering in this study is that from an initial configura-
tion X init in flight phase, the NC is desired to control
the robot to the configuration that has state variable
Xref = [0, 0, 0]T . In this study, parameters of the
robot are as:

M = 2, J = 2
3 , m1 = 0.5, m2 = 0.1, d = 1, r = 1

The system is tested with two distinct initial config-
urations as X init. 1 = [2.0, π/4, π/4]T , and X init. 2 =
[1.0, π/6, π/3]T (see Ref. [2]).

In this paper, fourth-order Runge-Kutta method is
utilized with step size of 0.005. While linear function
f(x) = x is used for input and output layers, the tan-
gent hyperbolic activation function f(x) = tanh(x) is
introduced into hidden layer, as it is known as an ef-
fective activation function for NN. The initial connect-
ing weights of NN is drawn randomly from a uniform
distribution from the range of [−0.3, 0.3]. The param-
eters of GA are selected to be small values in respect
to computation cost as depicted in Table 1.

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 606



Table 1: Parameters of genetic algorithm
Parameter Value/scheme
Population N 50
No. of Offspring 0.6 × N
No. of generation 100
Bit number 16
Solution range [−20, 20]
Mutation rate 0.2
Selection scheme Roulette wheel
Qi 1.0
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Figure 4: Learning curves

Using the defined parameters and a 3–5–2 struc-
tured NN, simulations are implemented. The simula-
tion results are shown in Figs. 4, 5, and 6. We can see
that the NC evolves over generations and the trained
NC can control the robot effectively.

4 Four-wheel Vehicle Control by NC

Figure 7 shows a four-wheel vehicle system where
L = 2.5m is distance between two axles of the vehicle.

Let X = [x1, x2, x3, x4]
T = [x, y, θ, φ]T be state

variable of the system. The input of this system is
u = [u1, u2] =

[
v, φ̇

]
, where v and φ̇ is forward veloc-

ity of the rear wheels and velocity of steering wheel of
the vehicle, respectively. The dynamics of the system
is as: ⎡⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cosx3 0
sin x3 0
1
L tanx4 0
0 1

⎤⎥⎥⎦ [
u1

u2

]
(5)

The task of the control system is to regulate the ve-
hicle from a certain configuration X init to the desired
state at origin that has state Xref = [0, 0, 0, 0]T . We
implement the tests with four different initial config-
urations X init as described in Table 2. In this case, a
4–5–2 structured NN is utilized.
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Figure 5: Control result (X init. 1 = [2, π/4, π/4]T )
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Figure 6: Control result (X init. 2 = [1, π/6, π/3]T )

Simulations are performed with the defined param-
eters and similar ones as in the last section. The sim-
ulation results are shown in Figs. 8, 9, and 10. It ap-
pears that the NC could control the vehicle effectively,
and due to the difficulties arising from the initial con-
figurations, it is harder for training the NC when using
the two later sets (see Fig. 8).

(x, y)

L
v

θ

φ

Figure 7: Four-wheel vehicle

5 Summary

This paper has focused on the nonholonomic sys-
tems control using NC and GA. Two typical examples
of such systems are investigated. By simulations we
have shown that the NC could control the systems ef-
fectively without the need of chained form conversion.
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Table 2: Initial configurations for testing
Set No. x [m] y [m] θ [rad] φ [rad]
Set 1 8.0 3.0 0 0
Set 2 -7.5 3.5 −π/2 0
Set 3 -7.0 -4.0 −5π/6 π/12
Set 4 8.5 -3.5 3π/4 π/6
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Figure 8: Learning curves
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Figure 9: Trajectories of the vehicle
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(b) Steering angles
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Figure 10: Control results
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